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ABSTRACT 

Modeling Clinic Utilization by Considering Panel size, Multi-comorbidities 

and Patient Scheduling 

Mahsa Kiani 

Many appointment-based clinical systems experience long waiting times. Consequently, these 

systems experience higher rates of cancellation or no-show. This problem creates 

dissatisfaction among customers, as well as inefficiencies in healthcare systems, but more 

importantly, increases medical complications due to postponement of care. As an added 

complication, sometimes no-showing patients will reschedule appointments and the rate and 

reschedule discipline can have significant effects on overall patient satisfaction and system 

efficiency. In this study, a one server, multi-class queuing network model is proposed in which 

patients have a probability of no-showing as well as a rescheduling rate. No-show and 

rescheduling rates are computed based on the current backlog of the system. This model 

categorizes patients into different classes, based on number of comorbidities, with individual 

service times and arrival rates. In addition to considering the differences of various classes of 

patients, the model also decreases the under-utilization of resources by considering the no-

show and rescheduling rate of customers. The purpose of the model is to determine the number 

of patients representing the panel size allocated to a specific physician, with recommendations 

for adding physicians to alleviate increasing backlogs based on increasing rates of comorbidity. 

In the second section of the study, the appointment system is simulated, and its results are 

compared with those generated by queuing theory. A preference model is then introduced 

which gives patients an option of choosing among all available appointments. The simulation 

results suggest that allowing patients to choose their favorite appointment time does not affect 

overall system utilization. 
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Chapter 1 

1. INTRODUCTION 

1.1. Background 

In today’s healthcare system, the increase in requests for doctors combined with a shortage of 

physicians has led to an increase in the number of patients who ask for appointments at different 

clinics. The significant outcome of the increase in appointment demand is the growth of patient 

panel size, the number of unique patients who are allocated to a specific doctor. More 

specifically, there are two recent healthcare developments that have heavily contributed to the 

growing number of requests for appointments at U.S. clinics.  

The first consideration is the Medicaid expansion under the Affordable Care Act (ACA), which 

first requires an understanding of the differences between Medicaid and Medicare. Medicare 

is an insurance program under which medical bills are paid from trust funds, which those 

covered have paid into, which primarily serves people over the age of 65 regardless of income. 

This program also covers younger disabled patients and dialysis people (DCD, 2015). Patients 

pay part of the cost for hospital stays and other costs through deductibles, which do not vary 

significantly across the country (DCD, 2015). On the other hand, Medicaid serves low-income 

people without considering their age. Patients typically do not pay for covered medical charges, 

however sometimes a small co-payment is required (DCD, 2015). The ACA expanded only 

Medicaid coverage. Based on reports, by 2022 this program will insure 33 million Americans 

(Klein, 2012). 30 states as well as the District of Columbia opted to expand Medicaid under 

the ACA.   

Despite the benefits that the ACA brought, it caused some problems as well. This program 

made cuts in some doctors' payments, prompting some physicians and patients to warn that the 

reductions could make some problems for patients to get service (Pear, 2014). Considering the 

fact that this program will add millions of Americans to the government entitlement 

scheme, the shortage of doctors through the United States is set to get much worse. Also, 

statistics show that with the rollout of the ACA law, people are more willing to see doctors and 

physicians. In other words they are willing to see doctors for less important issues. As a result, 
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the number of appointment requests will increase, further compounding the other problems 

associated with a shortage of doctors that has resulted in an increasing panel size. 

The second contributing factor for a rise in physician appointment requests is the Veteran's 

Health Administration. The Veteran’s Health Administration is part of the Department of 

Veterans Affairs (VA). It is a government-run network of 1,700 hospitals, clinics, counseling 

centers and nursing homes across the country which annually serves about 9 million of the 

nation's 22 million veterans (Somashekhar, 2014). The VA wants all veterans to have access 

to health care, which is available to anyone who served in the military and was discharged 

under any condition aside from dishonorable (Somashekhar, 2014). If somebody is under VA's 

healthcare coverage, he or she does not need to take extra steps to reach the ACA coverage 

standards (U.S.VA, 2015). Kesling (2014) reported that the VA's main goal is that no more 

than 14 days would be acceptable for the time between a patient's request date and the actual 

appointment date. This period is presumed to be the waiting time of patients for getting 

appointment. The actual waiting time of patients is reported to be 115 days, with 84% of 

patients having to wait more than 14 days.  One reason for the long waiting is the 

aforementioned shortage of doctors. According to the American Federation of Government 

Employees, "some VA doctors are carrying workloads of more than 2,000 patients — far more 

than the 1,200 goal set forth in the Veterans Health Administration handbook" (Somashekhar, 

2014). Washington Post's website states that "the agency is struggling to hire 400 primary-care 

physicians, positions that are notoriously hard to fill because of a nationwide shortage of these 

types of doctors" (Somashekhar, 2014). Based on this website's report, this is not just a VA 

matter but an issue troubling the U.S. medical system in general. Meanwhile, the demand for 

VA services has increased (Somashekhar, 2014). 

Considering these dual aspects along with the shortage of physicians that exists in many clinics 

all over the U.S., the growth in panel size of patients to cover increasing number of 

appointments is not surprising. One significant consequence of increasing panel size is an 

increase in no-show probability. The no-show probability, or no-show rate, is the rate at which 

patients do not show up for their appointments. There are different reasons behind no-shows, 

for example patients may have transportation problems or simply forget about the appointment. 

The biggest contributing factor, though, is the amount of backlog, which is related to the 

number of patient requests. The amount of backlog is the maximum number of patients who 

have already gotten appointment and are in the queue in front of the new patient. 

http://www.va.gov/health/
http://www.va.gov/health/
http://www.va.gov/vhapublications/ViewPublication.asp?pub_ID=2017
http://www.nytimes.com/2014/05/30/us/doctor-shortages-cited-in-va-hospital-waits.html?hpw&rref=us
http://www.nytimes.com/2014/05/30/us/doctor-shortages-cited-in-va-hospital-waits.html?hpw&rref=us
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Increased no-show rates has detrimental effects for clinics, and various studies have 

investigated these consequences. It has been found to have a noticeable effect on annual clinic 

revenue (Moore et al., 2001), and causes idle time for physicians. No-show patients also affect 

the arrival rates within the system due to rescheduling of no-show appointments. Consequently, 

trying to control and reduce the number of no-show patients is an important problem worthy 

of study. There have been several suggested solutions to decrease the no-show rate. For 

instance: 

1) Reminding patients about their appointments by email or phone,  

2) Providing patient transportation to facilities, 

 3) Providing nursery care for patients with babies,  

4) Updating personal and contact information of patients, and tracking patients who historically 

do not show up for their appointments, and 

5) Sending a gift card for patients who show up for their appointments. 

 

Some clinics have a policy of charging no-showing patients a fee to deter them from not 

showing up to scheduled appointments. Despite all of these strategies, high no-show rates 

continue to exist in health care systems and reduce their efficiency.  

One of the other important issues facing the healthcare system, is the subject of multi-

comorbidity patients. Feinstein (1970) first defined the word 'comorbidity' as "any distinct 

additional clinical entity that has existed or may occur during the clinical course of a patient 

who has the index disease under study". Multi-comorbidity is a situation in which two or more 

comorbidity conditions exist. Lui et al., (2013) state that "Because different types of patients 

may have different visit frequencies as well as various demand for providers' consultation time, 

multi-comorbidity situations directly influences both the "demand" and "supply" side of a 

practice" (Lui et al., 2013).  

In most studies patients are considered the same, however in reality patients have different 

attitudes which is related to the multi-comorbidity issue. To clarify, patients with more 

comorbidities may need to see doctors more times in a year that patients with fewer 

comorbidities, or their care sessions may be longer. Thus, in the study of healthcare systems, 

the issue of multi-comorbidity must be seriously considered. 
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1.2. Research Objective 

Considering the fact that the number of patients who request appointments is increasing each 

year, hospitals and clinics are facing a large volume of demand. Therefore, their objective must 

be to optimize their appointment system by allocating the maximum number of patients to 

doctors as possible. It is precisely this problem that is the focus of this project, resulting in 

obtaining the optimal panel size of patients to assign to an individual physician. To obtain the 

optimal panel size, two main factors are considered. The first factor is the rate of no-show 

patients, a function of the amount of backlog. As the state of the system changes, the no-show 

rate will be updated and calculated based on the current amount of backlog. Among no-show 

patients, some proportions will reschedule their appointments, which is called the rescheduling 

rate.  During this study, a function based on the amount of backlog is proposed to update the 

rescheduling rate of the system at each step. This is the second considered factor. The third 

factor is the problem of different groups of patients with different number of comorbidities, 

which helps in allocating the right number of appointment spots for each group. 
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Chapter 2 

2. LITERATURE REVIEW 

2.1. Background 

For many service systems, obtaining the optimal amount of servers is a basic issue, since it 

affects the quality of services, wait time of the patients, and total revenue of the system. For 

health care systems, this concern is a critical matter. 

Panel size of a clinic, is the number of unique patients who are allocated to a specific doctor. 

Estimating the panel size can be a useful method for server planning. Altschuler et al. (2012) 

estimated the patient panel size for primary care doctors by considering different models that 

allocated some parts of preventive and chronic care to non-physician persons, and observed 

that they could offload preventive care and chronic care which were possible with their existing 

workforce. The amount of backlog determines the maximum number of patients in the 

appointment queue who have gotten their appointment but still have not met with a physician. 

Hawkins (2011), by perusing 1,162 medical offices in different areas in the U.S., found that 

waiting time for getting an appointment depended on the specialty of the treatment. For 

example, the waiting time was 22.1 days for dermatology, 20.3 days for family practice and 

just 16.8 days for orthopedic surgery. In 2014, a problem at the VA concerning scheduling 

timely access to medical care was published. Kesling (2014) reported that the VA's main goal 

is that no more than 14 days would be acceptable as waiting time of patients for getting 

appointment. However, the actual waiting time of patients is reported 115 days, and 84% of 

patients had to wait more than 14 days which is a far cry from their goal. One of the outcomes 

of a large backlog is increase the no-show rate. 

 

2.1.1. No-showing rate 

All appointment-based service systems, and particularly health care systems, suffer from high 

no-show rates.  Based on the characteristics of each clinic, the no-show rate is different and 

can reach up to 60% (Cayirli et al., 2006). Defife et al. (2010) reported a 21% no-show rate for 
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a psychotherapy clinic while Dreiher et al. (2008) found a 30% no-show rate in an outpatient 

obstetrics and gynecology clinic. Green and Savin (2008) mentioned that "no-show patients 

create a paradoxical situation in which a physician is under-utilized while patients have long 

waits before getting appointments" (Green and Savin, 2008). Moore et al. (2001) estimated that 

about 31% of the patients who had an appointment did not show up in a family clinic. They 

investigated the consequences of this above average rate of no-show, and noticed between 3% 

and 14% of annual revenue was lost because of missed appointments.  

Evidence shows that the rate of no-shows increases with the growth of appointment backlogs 

(Gallucci et al., 2005). Gallucci et al. (2005) considered the effect of different variables on the 

probability of keeping an appointment. The major predictor is the number of days between 

asking for an appointment and the available time, while age, sex and comorbidity are 

considered potential confounding variables. The chi square test for trend was used to assign 

the relationship between appointment delay and missed appointment. Multivariate logistic 

regression was used to appraise the magnitude of the relationships between the predictors and 

missed appointments. The results show that gender, age and number of comorbidities influence 

the no-show rate for some patients. However, the most important factor is appointment delay 

or the amount of backlog. For every day of increased appointment delay, the possibility of a 

no-show increases. Wang and Gupta (2011) investigated the effective factors on no-show 

probability, and proved that the history of a patient can change no-show rate in addition to 

backlog. If a person has a record of not coming to his or her appointment, the probability of a 

no-show for him or her will increase next time. Lacy et al. (2004) interviewed 34 patients of 

an outpatient care clinic and found three main reasons for not showing: emotions (like fear and 

anxiety), perceived disrespect, and not understanding the scheduling system.  

Various methods have been proposed to decrease the rate of no-shows, including reminder 

calls, charging no-show patients or providing some transportation to the clinic. Pesata et al. 

(1999) conducted a survey of patients who called for an appointment at a clinic but did not 

show up, and 51% of them stated that a transportation problem was the cause. Tuso et al. (1999) 

worked on reducing backlog to decrease the rate of no-shows, and found that about 25-50% of 

the patients on the waiting list did not need a return appointment.  They suggested that sending 

a letter to the remaining patients to remind them to call for an appointment would reduce the 

backlog to an acceptable amount. Schmalzried and Liszak (2012) generated an intervention 

program to reduce the no-show rate. Based on their plans, a clinic sends e-mails to patients 

explaining the consequences of no-showing. Based on these policies, if a person does not show 
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up for three times, he or she must attend a reinstatement class. This approach reduced the no-

show rate from 34% to 10%. Some other strategies like tracking every no-show patient in 

computer systems, following up with missing patients or charging absent patients can also be 

helpful in decreasing the no-show rate. 

The effect of no-show on appointment scheduling has been shown in numerous simulation 

studies that allow general complexities in appointment systems while investigating the effects 

of varying the service time mean and variability (Robinson and Chen, 2010; Cayirli et al., 2006; 

Ho and Lau, 1992; Ho and Lau, 1999). There are also several analytical papers which involve 

no-show rates in appointment and system planning. The earliest studies consider patients who 

may arrive late or not at all in queuing models (Mercer, 1960; Mercer, 1973). Liu and Ziya 

(2013) considered the relationship between the no-show rate and appointment delay, and made 

demand and capacity control decisions. They used a one-server queuing model after 

considering two models. In the first, the fixed service capacity and the decision variable is the 

panel size, while in the second, the panel size and the service capacity are both decision 

variables. Their purpose was to maximize the net reward function. It is said that, "in addition 

to the magnitude of patient show-up probabilities, patients' sensitivity to incremental delays is 

an important determinant of how demand and capacity decisions should be adjusted in response 

to anticipated changes in patients' no-show behavior" (Liu and Ziya (2013)). Kaandorp and 

Koole (2007) developed an algorithm to obtain the optimal appointment times, considering 

exponential service times and the existence of no-show patients. Zeng et al. (2008) applied 

heterogeneous no-show rates to this model. 

 

2.1.2. Optimizing panel size using queuing theory 

As stated in the beginning, a useful method for handling the increase in demand for 

appointments in healthcare systems is optimizing the panel size of the patients. Based on the 

concepts of backlog and no-show rate, there are some studies which involve these facts in 

analytical methods to obtain the panel size. Garcia et al. (2002) have proposed a closed form 

solution for the M/D/1/K queue to estimate the panel size. Green and Savin (2008) updated 

Garcia's method to include a no-show rate. They proposed two methods: an M/D/1/K queue 

with a state-dependent no-show and an M/M/1/K queue with a state-dependent no-show. They 

assumed that there was a non-eligible no-show rate even for same day appointments. The rate 

of no-show increases as backlog increases until it reaches a maximum, at which point the rate 
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of no-show stabilizes at its maximum value.  In the M/D/1/K queue model, it is assumed that 

patients' service time is constant, however in the M/M/1/K queue model, their service times are 

independent and identically distributed (i.i.d.) exponential random variables. In this model a 

constant rescheduling rate was considered for the patients who did not show up to their 

appointments. The reschedule rate was set equal to 1, meaning that all the patients who were 

absent would reschedule their appointments. In addition, this study assumed that patient mean 

arrival and service times were identical. The research presented in this thesis relaxes both of 

these assumptions. 

The assumption that is common among many of the queuing analyses is that the arrival rate 

and service time of patients are constant, despite the fact that patients who enter the model do 

not have similar medical needs. A significant factor that causes these differences is the 

existence of multi-comorbidity conditions. Different numbers of comorbidities bring about 

various inter-arrival times (frequency of visits) and length of service times. Fortin et al. (2005) 

mentioned the scarcity of research in the area of multi-comorbidity patients in comparison to 

specific diseases, even though the behavior of these patients can significantly affect the 

efficiencies of healthcare systems. The queuing method that can be used to show the differences 

between multi-comorbidities is multi-class closed queuing networks, which provides a 

convenient framework with which to evaluate the impact of population constraints on the 

stochastic interactions between different classes at various nodes of the network (Satyam et al., 

2013). The research detailed in this thesis utilizes a multi-class, closed queuing network to 

investigate the impact of multi-comorbidity patients on patient backlog. Baynat and Dallery 

(1993) offered a method for obtaining estimated solutions of general closed queuing networks 

with a number of classes of customers. Their proposal was to associate a single-class closed 

queuing network with load-dependent exponential service stations to each class of patients. 

Satyam et al. (2013) presented a new approach to analyzing general multi-class closed queuing 

networks. Satyam et al. (2013) mentioned that "this approach is based on parametric 

characterization of the traffic processes in the network, which uses two-moment 

approximations to estimate performance measures at individual nodes" (Satyam et al., 2013). 

This model consists of R classes and J nodes, with each node modeled as a single server queue. 

The service time distribution of a class r at a node j is characterized by two parameters: the 

mean, r j
 , and squared coefficient of variation, 𝑐𝑠𝑟𝑗

2  .As a result, the service rate,
𝑟𝑗

 is equal to 

𝑟𝑗
−1(Satyam et al., 2013). The arrival process is described by the mean and SCV parameters 
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(𝑎𝐴𝑗 ,
−1 𝑐𝑎𝐴𝑗

2 ) (Satyam et al., 2013), and the arrival time distribution and service time distribution 

for a multi-class queuing network can be estimated.  

 

2.1.3. Application of simulation in healthcare system 

An alternative approach to modeling healthcare systems instead of queuing models is 

simulation. "Simulation is the imitation of the operation of a real-world process or system over 

time" (Banks, 1998). Simulation has many advantages in comparison to other methods. The 

level of detail of information that can be obtained using simulation is one of its benefits. 

Discrete event simulation (DES) is "a type of computer simulation that imitates the operation 

of a real-world system over discrete units of time" (Hamrock et al., 2013). Discrete event 

simulation has many application in improving healthcare systems. "Some models of outpatient 

clinics aim to improve patient flow, reduce wait times, maximize staff utilization, and 

accomplish other gains in efficiency" (Hamrock et al., 2013). Wang et al. (2011) found that 

from 1996-2006 the demand for emergency departments of hospitals in the U.S. increased by 

30% while the number of emergency departments decreased by 5%. To combat this trend, 

computer simulation is used in many emergency departments to decrease the length of patient 

stays. Hashimoto and Bell (1996) improved outpatient clinic staffing and scheduling based on 

simulation results. They changed the number of different resources and calculated waiting time 

for nurses and doctors, and obtained the optimal use of resources. Evans et al. (1996) developed 

a simulation model for emergency department using Arena software to have a means of 

investigating the desirability of various possible personnel schedules. Raunak and Osterweil 

(2005) described a resource model based on resource classes, resource instances, their 

attributes and relationships among them. Considering constraints of resources, they simulated 

the model and managed the utilization of them. 

 

 

 

 

https://en.wikipedia.org/wiki/Imitation
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2.2. Motivation for this project 

During the previous literature review, two methods (queuing and simulation) were commonly 

used to obtain optimal patient panel size, where "optimal" is taken to mean the amount that 

gives the smallest appointment backlog. The first part of this research has been derived from 

the Green and Savin (2008) study, which was the most closely related published research, 

however improvements were suggested to their original model. While they assumed that all 

patients were identical, with equal arrival rates and service times. The main motivation of this 

research is that patients were categorized into subgroups according to the number of 

comorbidities. By considering the system as a multi-class closed queuing network, desirable 

service times and arrival rate parameters related to each group will be estimated. In these 

networks, each class of customers has its own inter-arrival and service time. The estimated 

parameters will then be used in the M/D/1/K queuing model. In this model, K is the maximum 

capacity of the system. From this the panel sizes for the whole system and each individual 

group will be calculated. The no-show and rescheduling rates will also be considered in this 

model. The research will include a no-show function similar to the one used in the Green and 

Savin (2008) study, and increases as the backlog increases. While Green and Savin (2008) used 

a constant number for the rescheduling rate, this research will include a rescheduling function 

based on the size of the backlog. It will be used in the M/D/1/K model, to estimate the panel 

size for each group and for the whole system. The second phase of this research will be to 

simulate the queuing model assumptions as a discrete event simulation appointment system. 

At first, the simulation results will be compared with the ones obtained using queuing theory. 

Then the simulation model will be exercised for two different situations; (1) The first situation 

will be based on the first available appointment, meaning that when a person asks for an 

appointment, he or she is considered for the first available appointment. (2)The second situation 

will give more authorization to patients by allowing 25% of patients to choose between all 

available appointments.  
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Chapter 3 

3. QUEUING THEORY 

The first section of this research is application of queuing theory in investigation of a clinical 

appointment system. After patients ask for an appointment, they have to wait until they get a 

chance to see a physician. Meanwhile, they may change their plan. They might cancel their 

appointment, or simply not show up on their appointment date. Cancelation gives the system a 

chance to replace the appointment with a new patient, but no-showing causes various 

disadvantages. There are several reasons for not showing up, for example: holidays, special 

days of the week (eg, Mondays or Fridays), transportation problems or forgetting about the 

appointment. According to past studies, one of the most important factors that increases the no-

show rate is patient backlog. Gallucci et al. (2005) reported that the rate of cancellations and 

no-shows are dependent on the backlog at the time a patient receives an appointment. They 

presume a function for the no-showing rate based on the amount of backlog. This function has 

three specific characteristics: 

1. There is a no-show rate, albeit low, even for same day appointments.  

2. The rate of no-shows monotonically increases with the increase in backlog until it 

reaches a maximum. 

3. The rate of no-shows stabilizes when it reaches this maximum value (Green and Savin, 

2008). 

Using data from a public mental health clinic at the John Hopkins Bayview Medical Center in 

Baltimore, Gallucci et al. (2005) fitted the best line of no-show rate versus backlog. Green and 

Savin (2008) followed this approach and, with applying a line of best fit to their data, obtained 

the function of no-shows, based on backlog. Considering the three mentioned features, the 

suggested function is: 

m a x m a x 0
( ) ( )

k

Ck e   


   ,                                                                              (3.1) 
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Where k is the value of the appointment backlog when a patient asks for an appointment, 0
  is 

the minimum observed no-show rate, m a x
  is the maximum observed no-show rate and C is a 

no-show backlog sensitivity parameter (Green and Savin, 2008).  

We fitted the mentioned function to the Columbia MRI facility data which is derived from 

Green and Savin (2008), and results are shown in Figure 1. 

 

 

Figure 1. No-show rate based on the amount of backlog 

 

The obtained function based on observed values is:  

 
/ 3 7

( ) 0 .2 4 (0 .2 4 0 .0 2 5 )
k

k e


                                                                          (3.2) 

On the basis of the fitted model, the no-show backlog sensitivity parameter is equal to 37. The 

maximum and minimum no-show rates are 24% and 2.5%, respectively. 

 

3.1. M/D/1/K Queuing Model 

The M/D/1/K model is a finite capacity queuing system in which a patient's arrival rate follows 

a Poisson distribution with mean  , and constant service rate T.  The maximum capacity is K. 

In the following model, the patient panel size is represented by N, and is measured by 

computing the number of unique patients seen by an individual doctor within a specific time 
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frame. Green and Savin (2008) considered arrival as a Poisson process with rate N where   

is the arrival rate per patient and N  is panel size of patients. They mentioned that "although 

the customer pool is a finite source, N is assumed to be large enough that the arrival rate is 

constant and is not dependent on the number of patients in service and in the appointment 

backlog" (Green and Savin, 2008). It is considered that queue length K is finite, and that when 

a new patient comes into the system, if the number of patients in the waiting line is K, he or 

she will be lost. The system is FIFO, which means each patient who comes first will get the 

appointment first, and service rate is deterministic with length T.  

Initially, we represent some notations that are used in the model. These notations are derived 

from Green and Savin (2008). 

( , , )D k t t t  is the probability that a patient finishes his or her service between time instances 

t and t t   leaving behind k patients in the appointment backlog, where 0 1k K   . As a 

result, 

1

0

( , ) ( , , )

K

k

D t t t D k t t t





     , is the probability that service for a patient will be 

finished in the time interval [ , ]t t t   when k patients are in the backlog (Green and Savin, 

2008). The corresponding departure rates are defined: 

 
0

( , , )
( , ) lim

t

D k t t t
d k t

t

 




,                   0 1k K                                (3.3) 

 
0

( , )
( ) lim

t

D t t t
d t

t

 




                                                                              (3.4) 

(Green and Savin, 2008). 

The other important notations are backlog probabilities, ( , )p k t , for k 0 , ..., K , which is the 

probability that the appointment backlog includes k patients at time t, and t is in a set of time 

intervals:  : ( 1)
n

t n T t nT     , n N  (Green and Savin, 2008). 

The basic assumption considered in the model is that there are no patients in the appointment 

system at time 0t  . Based on this assumption, (0 , 0 ) 1, ( , 0 ) 0 , 1, ...,p p k k K    

( , 0 ) 0 , 0 , ..., 1d k k K   . ( , )p k t  and rates follow the below equations: 

(0 , t)
(0 , )

d p
N p t

d t
 

                                                                                         (3.5) 

( , )
( , ) ( 1, ) ,

d p k t
N p k t N p k t

d t
                          1, ..., 1k K                      (3.6) 
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( , )
( 1, )

d p K t
N p K t

d t
 

                                                                                  (3.7) 

(Green and Savin, 2008; Garcia et al., 2002).  

Now for time interval  : ( 1)
n

t n T t nT     , it is assumed the backlog probability ( , )p k t

, and departure rates ( , )d k t , are known.  

Let 
( )

( )
!

k N t

k

N t e
t

k








    (3.8) denote the probability that k patients arrive during time interval 

t.  

Let N T  , where T is service time, so we define: 

( )
!

k

k e
k

 



 ,         0k                                   (3.9)     (Green and Savin, 2008). 

( )k is the probability that k arrivals happen during a customer's service time. 

As a result, the transition matrix P of the Markov Chain is as follows: 

2

0 1 2 2

0

2

0 1 2 2

0

3

0 1 3

0

1 0 1

0 0

. . . 1

.. . 1

0 ... 1

0

1

0 0 ... 0 1

K

K k

K

K k

K

K k

P

    

    

   

  

 













 


 

 

 
 

 

 
 

 

 

 
 

 

  






                                                                  (3.10)  

For any time
n

t   , the departure rates are obtained: 

(0 , ) (0 , ) (1 (0 )) (0 ) (1 (0 )) (0 ) (1, ),d t p t T N r r d t T                                          (3.11) 

( , ) (0 , ) ((1 ( )) ( ) ( 1) ( 1)) (1 ( )) (0 ) ( 1, )d k t p t T N r k k r k k r k d k t T                

1

( (1 ( )) ( 1 ) ( 1) ( )) ( , ) ,

k

i

r k k i r k k i d i t T   



                          1, ..., 2 ,k K     (3.12) 
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2

0

( 1, ) (0 , ) (1 ( ))(1 r ( 1)) ( 2 ) ( 2 )

K

i

d K t p t T N i K r K K    





 
          

 


1 1

1 0

( , ) (1 ( ))(1 ( 1)) ( 2 ) ( 1 ) ,

K K i

i j

d i t T j r K r K K i   

  

 

 
         

 
                      (3.13) 

The proofs of all above equations are given by Green and Savin (2008) and Garcia et al. (2002). 

To obtain the optimal panel size, the stationary backlog distribution ( )k  is needed. The 

stationary distribution satisfies: 

*
( )

( ) , 0 , .. . , 1
d k

k k K
N




                                                                                            (3.14) 

where 

 ( ) lim ( , ),
t

k p k t
 

                             0 , ...,k K                                                          (3.15) 

*
( ) lim ( , ) ,

t

d k d k t
 

                            0 , ..., 1k K         (Green and Savin, 2008).     (3.16) 

Therefore: 

* * *
(0 ) (0 )(1 (0 )) (0 ) (1)(1 (0 )) (0 )d d r d r       ,                                                          (3.17) 

* * *

*

1

( ) (0 )((1 ( )) ( ) ( 1) ( 1)) (1 ( )) (0 ) ( 1)

((1 ( )) ( 1 ) ( 1) ( )) ( )

k

i

d k d r k k r k k r k d k

r k k i r k k i d i

     

   



       

      
 (3.18)           

1 ...., 2k K 
  

and 

2 1 1

* *

0 1 0

*

( 1) (0 )((1 ( ))(1 ( 1)) ( 2 ) ( 2 )) ((1 ( ))(1 ( 1))

( 2 ) ( 1 )) ( )

K K K i

i i j

d K d i r K r K K j r K

r K K i d i

     

 

   

  

           

   

  
  

(Green and Savin, 2008).                                                                                                 (3.19) 
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A new notation, ( )f k , is described as the proportion of the departure rate at k, over the 

departure rate at the 0 point, which is shown as: 

*

*

( )
( )

( 0 )

d k
f k

d
                                            0 ,1, ..., 1k K  .                                           (3.20) 

So for different amounts of k, f is obtained: 

 (0 ) 1,f                                                                                                               (3.21) 

 (1) 1,
1 (1)

e
f

r




 


                                                                                            (3.22) 

 ( 1) .( ( ) (1 ( 1)) ( ) ( ) ( 1))
(1 ( 1))

e
f k f k r k k r k k

r k



   


       
 

  

1

( ( (1 ( 1)) ( 1 ) ( ) ( ) ) ( ) ) ,
(1 ( 1))

k

i

e
r k k i r k k i f i

r k



   
 

     
 

                        1, ..., 1k K   

(Green and Savin, 2008).                                                                                              (3.23) 

Using all previous equations, the stationary backlog distribution is obtained. 

1 1

0 1

1 ( )
(0 ) ,

1 ( ) ( ( ) ) r ( ( ) ( ) ) ( )

K K

i i

r K

r K f i K i f i




   

 

 




    

                                                 (3.24) 

1 1

0 1

(1 ( )) ( )
( ) ,

1 ( ) ( ( ) ) ( ( ) ( ) ) ( )

K K

i i

r K f k
k

r K f i r K i f i




   

 

 




    

                      1, ..., 1k K     (3.25) 

and 

1

0

1 1

0 1

(1 ( )) ( ( ) )

( ) 1 .

1 ( ) ( ( ) ) ( ( ) ( ) ) ( )

K

i

K K

i i

r K f i

K

r K f i r K i f i





   





 

 



 

   



 

                                

(Green and Savin, 2008; Garcia et al., 2002).                                                               (3.26) 

Equation (3.26) shows the stationary backlog distribution. In this equation, the no-show and 

rescheduling rate of patients are considered. For no-show rate, the aforementioned function 

based on the amount of backlog is used; however, the rescheduling rate is assumed to be a 

constant number. Green and Savin (2008) considered the rate to be 1 for simplicity.  
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3.2. Multi-Class Network 

The current M/D/1/K model considers all patients the same, but in real healthcare systems there 

are different factors that make patients distinct from one another. One of these factors is the 

number of comorbidities. Based on the definition of the National Institute on Drug Abuse, 

when two disorders or illnesses occur in the same person, simultaneously or sequentially, they 

are described as comorbid (www.drugabuse.gov, 2010). Comorbidity also implies interactions 

between the illnesses that affect the course and prognosis of both (www.drugabuse.gov, 2010). 

Patients with multiple comorbidities need to see doctors more often. In other words, the number 

of comorbidities affects the frequency that each patient spends visiting his or her doctor and 

correspondingly has a higher mean arrival rate. Therefore, in this study patients are categorized 

based on the number of comorbidities, and it is assumed that patients in each group with the 

same number of comorbidities have the same arrival rate and service time. To achieve this goal, 

a multi-class queuing network model is used to represent the appointment system 

characteristics. First different multi-class networks and related parameters are introduced.  

A multi-class queuing network, is one that services multiple groups of customers which may 

have various services and arrival rates, different routes through networks and per unit of 

waiting time cost (Bertsimas et al., 1994). Multi-class queuing networks consist of two special 

categories: closed multi-class queuing networks, open multi-class queuing networks.  

In an open model jobs enter the network at random from outside at a fixed rate, are received at 

one or more nodes and eventually leave the network (Whitt, 1984). Thus, with an open model, 

the total external arrival rate or throughput is an independent variable, and the number of jobs 

in the system is a dependent variable (Whitt, 1984). On the other hand, in a closed model there 

is a fixed number of jobs in the network. Therefore, with a closed model the number of jobs in 

the system is an independent variable and the throughput is a dependent variable (Whitt, 1984). 

Closed queuing networks are classified into two groups: product-form networks, non-product-

form networks. A queuing network is said to have a product-form solution when: 

1 2

1

p ( , , . . . , ) ( )

K

K k k

k

n n n p n



                                                                                        (3.27)    

where ( )
k k

p n  is a function only of the kth node (Sahner et al., 2012).  
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This is true when the following characteristics hold: 

1. The routing of customers from one service center to the next must be history 

independent, i.e., memory less (or Markovian). 

2. The queuing disciplines may be FCFS (First Come First Served), PS (Processor 

Sharing), IS (Infinite Server) or LCFSPR (Last Come First Serve with Preemptive-

Resume). 

3. For an FCFS center, the service time distribution must be exponential; for other servers, 

the service time distribution does not have to be exponential but must be differentiable. 

4. A product-form network may have multiple chains (multiple classes) of jobs and may 

be open with respect to some chains of jobs and closed with respect to others. External 

arrivals for all open chains must be Poisson distributed (Sahner et al., 1996). 

However, product form networks need assumptions to obtain a product-form solution, and in 

the real world, they are not practical. 

As mentioned before, a closed multi-class queuing network is used to show the characteristics 

of the appointment system. In the following, the applied network will be described using the 

methodology of Satyam et al. (2013).                                                                                                                                                                 

The model consists of R classes, and patients in each class have the same number of 

comorbidities. The number of nodes is considered to be 1 since the panel size in being obtained 

for one physician. The service time mean of each class is given by r
 . This means that the 

service rate for class r, r
 , is equal to 

1

r




(Satyam et al., 2013). The list of all notations used in 

the model is as follows: 

R : Number of classes in the system. 

r
 : Service rate of class r, equal to

1

r




.  

A
 : Mean of service time of an aggregate class. 

1

r




: Mean of inter-arrival time of class r. 

1

A




: Mean of inter-arrival time of an aggregate class. 

A is used to indicate the parameter of an aggregate class. The analysis in Whitt (1984) and 

Bitran and Tirupati, (1988) has led to the following equations: 
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1

R

A r

r

 



                                                                                                                    (3.28) 

and 

A r r

r E

  



   where 
r

r

A





 for all r E .                                                                 (3.29) 

The above equations show the aggregate service rate and inter-arrival time for all classes. 

Patients with the same number of comorbidities are categorized into the same groups, and it is 

assumed that they have the same arrival rate and service time. Using these service times and 

arrival rates of different groups, it is possible to calculate the aggregate service rate and inter-

arrival time for all classes and use it in the model, altering the M/D/1/K model of Green and 

Savin (2008). The panel size of each group of patients was estimated by applying this network. 

The strategy which is used to obtain the panel size is identical to that used by exactly the same 

as one that Green and Savin (2008), with a stationary backlog distribution. 

  

 

3.3. Rescheduling Function 

As mentioned before, equations 3.25 and 3.26 show the backlog distribution considering the 

no-show function and rescheduling rate. The assumption of the model is that each patient that 

no shows, will reschedule his or her appointment with a probability ( )r k , where k
 is the 

probability of no-show considering k backlog, and r is the rescheduling rate. In previous 

studies, the rescheduling rate was assumed to be constant. Green and Savin (2008) assumed a 

rescheduling rate of 1, indicating that all no-show patients would automatically reschedule their 

appointments. However, in reality, some patients may give up their appointments, or change 

the clinic and the physician. One of the factors that affects the behavior of patients who want 

to reschedule their appointment is the day of the new appointment. If the new date is not close 

to what they want, they might change the clinic and not reschedule. Green and Savin (2008) 

showed that, by increasing the amount of backlog and panel size, the rescheduling rate will 

decrease. Inspired by the no-show function, a rescheduling function was introduced while 

considering three basic assumptions: 
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1. There is a maximum rate for rescheduling that exists for same-day appointments.  

2. The rate of rescheduling monotonically decreases with the increase in backlog until it 

reaches the minimum amount. 

3. The rate of rescheduling stabilizes when it reaches this minimum value. 

Using these assumptions, the re-scheduling function is estimated as: 

m in m a x m in
( ) ( ) e

k

sr k r r r


                                                                                             (3.30) 

where m in
r  is the minimum rescheduling rate, m a x

r is the maximum rate, k is the amount of 

backlog at the time the patient wants to reschedule his or her appointment, and S is the re-

scheduling function parameter. Green and Saving (2008) based on the Columbia MRI facility 

data, considered the maximum and minimum rescheduling rates to be 1 and 0, respectively. 

These, same values were applied to this function. An exponential function for the re-scheduling 

rate is assumed, however this rate can also be described as a linear function. The purpose of 

considering a function for re-scheduling is to update this rate based on the current amount of 

backlog every time that a patients requests to reschedule an appointment.  

With these minimum and maximum rates, the rescheduling function can be obtained. It can be 

found plotted in Figure 2.  

 

 

Figure 2. Rescheduling rate based on the amount of backlog 
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On the basis of above figure, the obtained function is: 

/ 3 0 / 3 0
( ) 0 (1 0 ) e e

k k
r k

 
                                                                                        (3.31)  

The calculated rescheduling function parameter is 30. Thus, this exponential function is used 

to update the rescheduling rate in each situation based on the current amount of backlog in the 

system. 

 

3.4. The Composed Model  

As mentioned previously, the purpose of this project is to extend the Green and Savin (2008) 

model to represent the features of our appointment system. The two main features that will be 

discussed are: 1) considering the multi-comorbidity patients and, 2) updating the rescheduling 

rate at each entrance. The proposed model is a multi-class queuing network considering no-

show rate and rescheduling rate based on the amount of backlog. Green and Savin (2008) used 

the stationary backlog distribution of an M/D/1/K model to obtain the optimal panel size. We 

alter the M/D/1/K model to a network to consider patients with different number of 

comorbidities. The arrival rate and service times are calculated using the aforementioned 

aggregate formulas. The no-show function is exactly the one that Green and Savin (2008) 

introduced. However for rescheduling rate the exponential function is used. The stationary 

backlog distribution is used to estimate the panel size. Based on these extensions we update the 

stationary backlog distribution according to the following equations: 

 

1 1

0 1

(1 ( ) ( ) ) ( )
( ) ,

1 ( ) ( ) ( ( ) ) ( ( ) ( ) ) ( ( ) ( ) ) ( )

K K

i i
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k

r K K f i K i r K r i f i



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 

 




     

                     (3.32)                        

1, ..., 1k K          
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 
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 
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For different amounts of k, the above equations gives the probability that the amount of backlog 

during a large run is k. 

To obtain the expected amount of backlog for each panel size point, the following formula is 

used: 

0

. ( )

K

i

k k k



                                                                                                             (3.35)   
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Chapter 4 

4. DATA AND RESULTS 

The composed model was applied to the data from the Mayo Clinic Primary Care Internal 

Medicine (PCIM) study. Table 1 shows the rate of arrival based on the number of 

comorbidities. Based on the experience of Mayo Clinic physicians, Liu et.al (2015) considered 

a constant service time on the basis of the number of comorbidities. According to this 

assumption, the service time for patients with 0, 1 or 2 comorbidities is 20 minutes, and for 

patients with 3 or more comorbidities is 40 minutes. The maximum number of comorbidities 

considered was 7. The details of the PCIM data are represented in Table 1.  

 

Table 1. Arrival rate and service time of different groups of patients  

Number of 

comorbidities 

0 1 2 3 4 5 6 7 or 

more 

Arrival rate 

per patient 

per day 

0.006 0.011 0.015 0.02 0.026 0.03 0.038 0.041 

Average 

number of 

patients per 

day 

 

0.83 

 

2.75 

 

3.69 

 

4.56 

 

4.04 

 

1.81 

 

0.70 

 

0.10 

Proportion of 

each group 
0.045 0.148 0.200 0.247 0.218 0.098 0.038 0.006 

Mean of 

Inter arrival 

time(minutes) 

575.12 174.79 129.99 105.18 118.76 264.90 681.06 4680.33 

Average of 

service time 

(minutes) 

20 20 20 40 40 40 40 40 
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Based on the above table, the average number of patients in each day is obtained by multiplying 

the arrival rate per patient per day and the total number of unique patients of each group who 

request for appointment, which is derived from PCIM data. As the number of comorbidities 

increases the arrival rate per patient per day increases. Therefore patients with 7 or more 

comorbidities need to visit physician more than others. However since the number of patients 

in this group is so low, they have less average number of patients in each day. 

The mean of service time and inter-arrival times in minutes of the aggregate class are: 

3 2 .1
A

   

1 8 .0 3
A

    

As mentioned before, the arrival rate is a Poisson process with mean N , where   is the 

arrival rate per patient and N  is the panel size of patients. Using the aggregate arrival rate 

formula, the rate of arrival per patient per day for the aggregate class, A
 , can be obtained. In 

this case 0 .0 1 7
A

      

Therefore 0 .0 1 7 N  is used as the arrival rate in the model. Testing different values of N, this 

rate would be diverse in different situations. 

The stationary backlog distribution function for composed model was applied to PCIM data, 

producing an arrival rate of patients of 0 .0 1 7 N . The stationary backlog distribution was 

estimated by using varying panel sizes. The results are shown in Figure 3.  
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Figure 3. Stationary backlog distribution for different panel sizes 

 

Based on the above figures, by increasing the patient panel size, the stationary backlog 

probability and expected amount of backlog increase gradually. Around N=1000 and N=1100 

the growth rate significantly increased. If we accept less than a 15% possibility to reach the 

maximum amount of backlog, N=1100 is the optimal panel size. 

Figure 4 shows the expected appointment backlogs. Therefore, if we choose N=1100, the 

expected appointment backlog is 80 spots or almost 5 days (Considering this fact that in each 

day, each physician meets 18 patients). 

 

Figure 4. Expected appointment backlog for different panel sizes 
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Now that the panel size of the system has been estimated, the panel size for each class of 

patients is needed. Applying the weighted average by using r
 of each group, the panel size of 

each group was obtained. They are shown in Table 2. 

 

Table 2. Panel size for each group 

Number of 

comorbidities 

0 1 2 3 4 5 6 7 

Panel size of 

each class 

139 250 246 228 155 60 19 3 

 

 

These numbers are completely dependent on the arrival rate and aggregate service time which 

is assumed before. For patients with 0, 1, and 2 comorbidities service time is 20 minutes and 

for ones with more number of comorbidities, it is assume to be 40 minutes. If we change the 

second assumption from 40 minutes to 30 minutes, the results would be different. By 

considering this change, the aggregate service time would be 2 6
A

  . The following figure is 

obtained considering new situation. 

 

 

Figure 5. Stationary backlog distribution for new situation 
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Based on the above figure, the optimum panel size is increased. Considering our previous 

assumption for choosing optimal panel size, which is having a stationary backlog distribution 

close to 15%, N=1400 would be acceptable. Therefore, panel size of each group would 

increase.
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Chapter 5 

5. SIMULATION 

5.1. Methodology 

Queuing theory has several applications in healthcare system improvement, but it brings 

limitations that prevent the proposed models from showing all the features of a real 

appointment system. In contrast to queuing theory, simulation is more flexible with regards to 

the features of real systems. One of the primary advantages of simulation models is that they 

are able to provide users with practical feedback for designing real-world systems (Craig, 

1996). Another benefit of simulation is that it permits system designers to study a problem at 

several different levels of abstraction (Craig, 1996). 

For these reasons, simulation was used as the second strategy to investigate the appointment 

system. In the aforementioned model, events occur during units of time, T. Therefore, discrete 

event simulation is used to demonstrate the state of the system. The model was coded using the 

MATLAB software.  

The below figure shows an overview of the appointment system. 

 

Figure 6. Simulation algorithm 
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Different groups of patients arrive and request appointments. Patients are categorized based on 

the number of comorbidities. Each group of patients has a different arrival rate and service 

time. When a patient requests an appointment, the first available appointment is given to him 

or her. Some patients may not show up, and may ask to reschedule the appointment. The no-

show and rescheduling rates used in the simulation model are the ones obtained based on the 

amount of backlog, discussed above. Patients do not have any authority to choose their 

appointment date, and the first available appointment is assigned to them. The state of the 

system during different units of time is shown with a 3×K matrix, where K is the maximum 

acceptable backlog. The first row of the matrix shows the presence of patients in the 

appointment system. Each element of the first row indicates one appointment spot, and is filled 

by either a 0 or 1. When an appointment position is allocated to a patient, the corresponding 

element switches to a 1, otherwise it remains 0. Table 3 shows the initial matrix. There are no 

patients in the system, so all rows are filled with zeroes. When the first patient enters, the first 

column of the first row is changed to 1.  Since there are no patients before the first one, the 

second row remains 0. Each element of the second row shows the number of patients in the 

backlog when a patient enters the model. Each spot of the third row is 0 or 1. 1 if a patient is 

going to be a no-show one and 0 otherwise. Because there is not a no-show patient, the third 

column is still zero in Table 4. 

 

Table 3. Initial matrix 

1 2 …  K-1 K 

0 0 …  0 0 

0 0 …  0 0 

0 0 …  0 0 

 

 

Table 4. The status matrix after the first arrival 

1 2 …  K-1 K 

1 0 …  0 0 

0 0 …  0 0 

0 0 …  0 0 
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The second step is shown in Table 5. The second patient enters and as a result, the first row of 

second column is changed to 1. Since there is already one person in the system, the second row 

is changed to 1, indicating that the number of patients in the backlog is 1. Because of absence 

of any no-show patients, the third row remains 0.  

 

Table 5. The status matrix after the second arrival 

1 2 …  K-1 K 

1 1 …  0 0 

0 1 …  0 0 

0 0 …  0 0 

 

The first time the generated random number is less than or equal to the no-show rate at that 

point, the first no-show patient arrives. It is assumed that this situation will happen for nth 

patient, so, the no-show row gets the first 1. In this step the backlog is n-1. This state is shown 

in Table 6.  

 

Table 6. The status matrix after the nth arrival 

1 2 … n … K-1 K 

1 1 … 1 … 1 1 

0 1 … n-1 … 0 0 

0 0 … 1 … 0 0 

 

 

This procedure continues until all K available positions are filled up. At this time, no more 

appointments can be accepted until the next day. At that point, M patients will receive service 

and M available positions will appear in appointment system. The patients who could not get 

appointments are called no-service patients. The matrix for the final step is as follows, 

considering that there is a no-show patient in the Kth position. 
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Table 7. Final matrix 

1 2 … n … K-1 K 

1 1 … 1 … 1 1 

0 1 … n-1 … K-1 K 

0 0 … 1 … 0 1 

 

At beginning of each day, the matrix is updated. The first M columns are removed, where M 

is the number of appointment for each day. The remaining patients are brought forward. This 

results in M empty spots plus the previous number of empty spots being available for new 

requests.  

 

5.2. Preference model 

The previous model is based on the assumption that patients always prefer the earliest available 

appointment. However, Murray and Tantau (2000), proved that 25% of patients who are 

offered same day appointment reject it in favor of later appointment. Although, no specific data 

which shows patient preferences could be found, this assumption and Green and Savin's (2008) 

supposition were accepted. Based on those findings, 75% of patients prefer the first available 

appointment while the remaining 25% have preferences with a uniform distribution over all 

available appointment times. The second model considers patients’ preferences, and is thus 

called the "preference model". The main procedure is exactly the same as previous one; with 

an increasing backlog, the no- show rate increases while the rescheduling rate decreases.  
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5.3. Results 

5.3.1. First available model 

The first scenario which is considered is the model with first available appointment option. 

PCIM data, which was used in the previous queuing theory section, were also applied to this 

model. The obtained panel size for each class and its arrival rate and service time were used. 

Instead of using the aggregate arrival rate and service time, which are applied in multi-class 

networks, each class's arrival rate and service time were used. This is shown in following table: 

 

Table 8. Arrival rate and service time for different groups 

# of 

comorbidities 0 1 2 3 4 5 6 7 

Average # of 

patients per 

day 

0.83 2.75 3.69 4.56 4.04 1.81 0.70 0.10 

Mean of 

Inter arrival 

time(minutes) 

575.12 174.79 129.99 105.18 118.76 264.90 681.06 4680.33 

Average of 

service 

time(minutes) 

20 20 20 40 40 40 40 40 

 

 

After running the model for 260 days (considering that a year has 260 working days in the US) 

with 100 replications, the number of patients who could visit the physician, no-show patients, 

rescheduling patients and the patients who could not obtain an appointment have been counted. 

These results are shown in the following tables.  

Table 9 represents the number of patients in each class who get a chance to visit the doctor 

during a year.  
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Table 9. Number patients in each group who visited the physician in a year 

# of 

comorbidities 
0 1 2 3 4 5 6 7 

# of patients 

who visited 

physician in 

one year 

209 683 921 1135 1007 449 176 25 

  

 

The Total number of patients who had a chance to visit the physician is 4,604. Among these 

patients, 184 of them are patients who rescheduled their appointments after not showing up for 

the first time. The following table shows the number of no-show and rescheduling patients for 

the year: 

 

Table 10. Number of no-showing and rescheduling patients 

No-showing Patients Rescheduling Patients 

314 100 

 

When the number of patients in the system reaches its capacity, K, no more patients can be 

accepted. The purpose of the proposed model is to decrease the number of no-service patients 

as much as possible. In this model, the number of no-service patients is 124.  

Next, the average backlog during these 260 days with 100 replications was calculated. It was 

found to be 6 days. In the queuing theory section the expected amount of backlog was 

calculated for different panel sizes. For the selected panel size of N=1100, it was50 

appointment spots, or (almost 5 days). These two numbers are close. Thus the simulation 

qualifies the proposed queuing model. 
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Table 11. Expected number of backlog using simulation and queuing theory 

Expected amount of backlog obtained by 

queuing theory for N=1100 

Average amount of backlog obtained by 

simulation 

5 days 6 days 

 

In the following the utilization of the physician can be found using the following formula. 

 

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑤ℎ𝑜 𝑣𝑖𝑠𝑖𝑡 𝑡ℎ𝑒 𝑝ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑝𝑝𝑜𝑖𝑛𝑡𝑚𝑒𝑛𝑡𝑠
         (5.1) 

4 6 0 4
0 .9 7 3

4 6 0 4 1 2 4
U tiliza tio n  



                                                                          (5.2) 

Therefore based on the simulation results the utilization of the physician is almost 97% which 

is completely acceptable. 

 

 

 

5.3.2. Preference model 

The second simulated model in this study is the preference model, previously explained. After 

running the preference model, for 260 days and 100 replication of each year, the following 

results were found: 

Table 12 shows the number of patients in each group who could visit the physician in one year. 

 

Table 12. Number of patients in each group who visited the physician in preference model in one year 

# of 

comorbidities 
0 1 2 3 4 5 6 7 

# of patients who 

visited physician 

in one year 

205 680 910 1128 1000 449 174 25 
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The total number of patients who visited the doctor was 4,571. The number of no-show and 

rescheduling patients is shown in Table 13. 

 

 Table 13. Number of no-show and rescheduling patients in preference model  

Number of No-showing Patients Number of Re-scheduling Patients 

308 118 

 

  

The average amount of backlog during these 100 replications was found to be 6 days. This 

number is in agreement with the amount obtained by the first model. 

The utilization of the physician was also calculated: 

4 5 7 1
0 .9 6 7

4 5 7 1 1 5 2
U tiliza tio n  



                                                                              (5.3) 

The utilization is not significantly different between the two models. This means that giving 

authority to approximately 25% of patients to choose among all available appointment times 

does not affect significantly the utilization of the system and therefore this model is preferred. 
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5.4. CONCLUSION 

The first section of this study, focused on obtaining an optimal number for a clinical panel size 

for each physician with the goal of having less waiting time for patients. Patients are 

categorized into different groups based on their number of comorbidities. Then, according to 

the expected backlog for each panel size, the optimal panel for each group is estimated. 

In the second section, using the calculated panel sizes from the queuing model approach, the 

appointment model is simulated. Two different scenarios are assumed. The first one is based 

on the queuing theory's assumption, which says patients always get the first available 

appointment. The second scnario, or preference model, gives 25% of patients an opportunity 

to choose between all available appointments. The expected appointment backlog for both 

models are obtained which close to the number that is obtained using queuing theory. At the 

end, the utilization of the physician is derived for both scenarios. The results represent that 

giving authority to patients to choose their appointment will not change the utilization. The 

application of categorizing patients to different groups based on the number of comorbidities 

is that the expected panel size of each group would be obtained, therefore in allocating 

appointments to patients, these number would be considered. 

In this research the service time of patients is assumed to be constant, however in future studies, 

an exponential distribution can be assigned. Also, the used no-show rate is based on the amount 

of backlog, and is identical for different groups of patients. However, a different function based 

on the number of comorbidity could be considered. 
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